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Review Article 
THE WORK OF E. T. JAYNES ON PROBABILITY, STATISTICS 
AND STATISTICAL PHYSICS* 

An important contribution to the foundations of probability theory, statistics and 
statistical physics has been made by E. T. Jaynes. The recent publication of his 
collected works provides an appropriate opportunity to attempt an assessment of this 
contribution. 
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I INTRODUCTION 

Most scientists are interested in solving particular problems. To do so they 
use whatever methods and theoretical structures seem to them appropriate. 
This is 'normal science' in the sense of Kuhn [1962] and as he says, 'One of 
the reasons why normal science seems to progress so rapidly is that its 

practitioners concentrate on problems that only their own lack of ingenuity 
should keep them from solving', (ibid. p. 37). Those of us who are concerned 
with our job prospects and publication lists avoid carefully the conceptually 
difficult problems associated with the foundations of our subject. Of course 
we are interested in why things are as they are and we shall be enthusiastic 
about new methods which give insight into this. The use of the renormalisa- 
tion group in statistical mechanics (see e.g. Pfeuty and Toulouse [1977]) is a 

good example of this. By exposing rather clearly the fundamental role of the 
correlation length in critical behaviour it gives a new understanding of phase 
changes. The whole theory is, however, clearly seen to be within the 
established structures of statistical mechanics. The foundations of science 
are at a deeper level than this and they are an object of concern in two more or 
less distinct ways. The first is brought to the fore when we have two or 
more substantially different theories competing for acceptance. This 

'revolutionary' situation is neither Jaynes' concern nor the subject of this 

paper. The second, which is, is when the interpretation of one or more 
of the concepts of an established theory are a matter of contention. 

Given a collection of magnetic dipoles interacting with certain prescribed 
forces any competent solid state physicist will know the rules for obtaining 
the magnetism and susceptibility of the system in equilibrium at a particular 
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temperature. To calculate these he will use the equilibrium probability 
distribution for the orientations of the dipoles, although in his final answer 
there need be no hint of this probabalistic element of the theory. He need 

not, and probably will not, choose to assign any particular meaning to the 

probabilities which he uses. Even in the works of those who made the 

greatest contribution to the foundations of statistical mechanics it is not 

always clear how they viewed the probabilities which they used.' The major 
contribution of Jaynes is in the proposition and development of one 

particular view of probability theory in relation to statistical mechanics. The 

publication of his collected papers (Jaynes [I9831)2 is of interest not only 
because of the intrinsic interest of his approach but also as a record of the 

development of his ideas over the twenty-four years represented by these 

publications. 

2 THE JAYNES MAXIMUM ENTROPY METHOD 

Jaynes' early papers are concerned with statistical mechanics. From the 
outset he rejects a frequentist view of probability and regards the probability 
distributions of statistical mechanics as expressions of human ignorance. 
This has led to much misunderstanding and misrepresentation of his ideas, 
sometimes abetted by his rather hyperbolic way of expressing himself. This 
has been particularly evident in discussions of entropy. His remark (CP, 86) 
that 'entropy is an anthropomorphic concept, not only in the well-known 
statistical sense that it measures the extent of human ignorance as to the 
microstate. Even at the purely phenomenological level entropy is an anthopo- 
morphic concept. For it is a property not of the physical system but of the 

particular experiments you or I choose to perform on it', is often quoted. As 

Denbigh [1981] helpfully suggests: 'There is no need to bring in "you or I"; 
that last sentence could equally well have been written "It is a property of 
the variables required to specify the physical system under the conditions of 
the particular experiment".' Whether or not Jaynes would regard this 
alternative phraseology as an acceptable alternative to his own we do not 
know. What, however, is clear is that he has, over the years, become 

increasingly aware of the hazards of misunderstanding and has made every 
effort to develop and consolidate his position. In doing so he has developed 
his work on Baysian theory to the point where statistical mechanics is seen as 
no different from any other situation in which there is a need to make 

predictions for a system about which there is a degree of uncertainty. 
'Predictive statistical mechanics' is Jaynes' chosen name for his approach to 
statistical mechanics. For him it 'is not a physical theory, but a form of 
statistical inference' (CP, 416). Rather than asking the question: 'How does 
the system behave?' which he takes to be the usual purpose of a physical 

1 For a discussion of this see e.g. Lavis [I977]. 
2 Henceforth referred to as CP. For convenience, all references to Jaynes' work are to CP, 

although most material is derived from work previously published. 
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theory (CP, 416) he chooses the question: 'Given the partial information we 

do, in fact, have what are the best predictions we can make of observable 

phenomena?' (CP, 416). 
For Jaynes a probability distribution (in statistical mechanics or any- 

where else) is neither completely subjective, in the sense of Ramsey or de 

Finetti, nor is it a property only of the system under investigation. Rather it 
is an attribute, both of the system and of the information we have or the 
observations we choose to make. The element of objectivity in his approach 
is contained in the assertion (CP, I1'7) that 'in two problems where we have 
the same prior information we should assign the same prior probabilities'. A 
rational and agreed procedure is, therefore, needed for the derivation of the 

probability distribution subject to the constraints provided by the given 
information. The key to this is the idea of uncertainty. Suppose we have a 

system whose states are given in terms of the discrete-valued random 
variable x with range {xl, x2, ..., xn}. 

Let pi be the probability of the event x 
= xi. Jaynes argues that a reasonable measure of the uncertainty in the 
distribution (pi} must satisfy the conditions: 

(i) It should be a non-negative continuous function of the variables 
{pi}. 

(ii) When pA = i/n, for all i, it should be a monotonically increasing 
function of n. 

(iii) It should satisfy a composition law consistent with the additivity of 
the probabilities of mutually exclusive events x = xi. 

Shannon has shown (see Shannon and Weaver [1949]) that the information 
entropy 

SI = - pilnpi (I) 

is the unique function, apart from a positive multiplicative constant, which 
satisfies these criteria. Jaynes takes this as his measure of uncertainty (CP, 8) 
remarking that it 'agrees with our intuitive notions that a broad distribution 
represents more uncertainty than does a sharply peaked one'. He then 
adopts the principle that the best probability distribution is that for which 

St is a maximum subject to any constraints imposed by the information we 
have about the system since (CP, 9) 'it is uniquely determined as the one 
which is maximally non-committal with regard to missing information'. If 
this argument is accepted then it is mathematically simple to derive the 
appropriate distribution.' This method is applied to equilibrium and non- 
equilibrium statistical mechanics and to the general problem of statistical 
prediction. The rest of this paper is divided into three sections concentrating 

The cases where the system is quantal, with non-orthogonal wave-functions, or where the 
underlying random variable x is continuous are also considered by Jaynes. Equation (I) is 
then generalised to 

St = - Trace [f Inf] (ia) 
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on Jaynes' work in these areas followed by a fourth section containing our 

concluding discussion. 

3 EQUILIBRIUM STATISTICAL MECHANICS 

Jaynes takes as typical (CP, 9-Io) the case in which we have a system with 
known energy spectrum {E1, E2, .. ., E,, and the information we are given is 
the average value e of the energy. Taking E as the random variable x of 
section 2 and equating e with the expectation value <E) we have the 
constraint 

E = EpiEi. (2) 

We use the undetermined multiplier 2 to maximise S, subject to the 
condition (2). This gives 

Pi = exp (- Ei2)/Z(2) (3a) 

where 

Z(2) = C exp (- Ei2) (3b) 

and 2 is given from (2) and (3a) by 

e = -d In Z/d2. (4) 

Equations (2) and (3) correspond closely to those of the usual canonical 
distribution. If we write Se = k(SI)max and T = I/(2k), where k is 
Boltzmann's constant, then it is straightforward to show that, in this case, 
equations are produced of the form of the basic thermodynamic relations 
with Se and T playing respectively the roles of thermodynamic entropy and 

temperature. In Jaynes' words (CP, 54) the 'maximum-entropy formalism 
leads automatically to definitions of quantities analogous to those of 

thermodynamics' and we agree with him when he continues: 'This is, of 

course, as far as any mathematical theory can go; no amount of mathematics 
can prove anything about experimental facts.' 

It is convenient to remain with this simple example while discussing a 
number of problems which have been raised, or we wish to raise, in relation 
to Jaynes' method. These can be broadly classified into three types: I. 

Experimental, II. Conceptual and III. Mathematical. 

and 

S1 = - (x) In [p(x)(x) 
in [p(x)m(x)] dx (ib) 

respectively, where in (ia) ft is a probability density operator (CP, 20-5) and in (ib) p(x) is a 

probability density function with m(x) the corresponding probability density function for the 
situation of complete ignorance (CP, 283). Jaynes' partial solution to the problem of 
determining m(x) is by means of the invariance group of the system. This problem is 
discussed in more detail in section 5. 
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I. The experimental problems can be characterised by asking two questions 
about the information which Jaynes uses to constrain his maximisation of 
the information entropy: 

(a) How is it collected? 

(b) Is it necessarily numerical? 

For the system described above we have given a quantity (E) which is 
construed as the expectation value of the energy. Two methods are 
described by means of which it may be obtained. In the first of these, a 

sample average is taken over a number of measurements. This is then treated 
as the expectation value (E). Jaynes himself asks (CP, 269): 'Is there not an 
element of arbitrariness in this?' and then proceeds to answer his own 

question in the following way (CP, 269-7 I). (i) If we decide to use maximum 

entropy based on the expectation value of E then we know in advance that 
the final distribution will be of the form of equations (3). (ii) Regarding (3) as 
a class of distributions parametrised by 2 it can be shown (and he shows it) 
that the maximum likelihood estimate of 2 is given by (4). Accepting Jaynes' 
theory this argument has force. The second method described for obtaining 
(E) seems to us rather less convincing. As he says (CP, 14), 'In practice a 
measurement of energy is rarely part of the initial information available; it is 
the temperature that is easily measured.' To explain how a measurement of 

temperature is processed to give a value for (E) he begins in a rather familiar 

way. He supposes that the system of interest (called aq) is in interaction with a 
second system q, which plays the role of a heat bath, the total energy E of Z 
= q + q being assumed to be the sum of the energies E, and E2 of q and q 
respectively. Two pieces of information are given or inferred, (i) all states of 

E, with given value of E, are 'equivalent' (CP, 14). (ii) the expectation value 

(E2> of the energy of r2 is assumed to be derivable from the temperature of 
the heat bath. The argument for the derivation of the canonical distribution 
for q is not given in detail, but could be reconstructed in the spirit of his 
method.' Our reservations about this programme concern the information 
content of (ii). Jaynes asserts (CP, 14) that 'a thermometer is a heat bath q 
equipped with a pointer which reads its average energy. The scale is, 
however, calibrated so as to give a number T, called the temperature, defined 

by I/T = dS2d (E2>.' This definition of a thermometer must be taken in 

conjunction with a preceding sentence which asserts that, for a heat bath 'the 

entropy S2 Of the maximum-entropy distribution for given <E2> is a definite 
monotonic function of <E2>'. We find some difficulty in interpreting these 
remarks. If the second one is intended to mean that S2 = S2(<E2>) is a known 
function, then it must have been obtained by some observations. If they are 

1One possible way to do this would be to (a) Use (i) and the maximum-entropy principle to 
show that the marginal probability pl(i) of a, in state i with energy Ei is of the form pl(i) oc w2(E 
-Ei), where w02 is the density of states of a2. (b) Use (ii) and the maximum-entropy principle 
to obtain the marginal probability p(j) of ao in canonical form. (c) Invert the partition function 
of ao in the limit of large a2 using the saddle-point method (Kubo [I965]) to give 

02. 
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measurments of E2then this surely defeats the object of the exercise (which is 
to formulate the programme in terms of temperature measurements). If they 
are measurements of temperature then maximum-entropy cannot be used 
with respect to (E2>. Alternatively one might suppose that he means us to 
understand that a measurement of temperature implies the existence of a 
well-defined but unknown (E2) the value of which is given only at the end of 
the derivation of S2((E2>). If this is the case, he might simply modify his 
usual discussion of entropy maximisation, subject to a given value of the 

expectation value of the energy, and say that a measurement of temperature 
is equivalent to knowing that (E) exists with a specific but unknown value 
and that, only at the end of the analysis, is the value of (E) revealed. 

These problems may be resolved if we could be clear what his answer is to 
our question (b) given above. The problem can be sharpened by examing the 

following situation. Suppose we have the system with n energy levels 
described above and we see (possibly through a glass screen or similar 

device) that it is immersed in a heat bath. We are unable to make any 
measurements on the system to obtain numerical information (other than 

knowing n, the number of energy levels). In this situation would Jaynes (i) 
use the maximum-entropy formulation to obtain the uniform distribution 

Pi = I/n, i = I, . . . , n (5a) 

with entropy 

Se = k(SI)max = k ln (n) (5b) 

which, for known n, would allow him to make definite predictions? Or would 
he (ii) infer from the presence of the heat bath that (E) is well-defined and 
use maximum-entropy to derive the canonical distribution given by (3) with 
2 = I/(k T) and with 

aT 

In the latter case he would not be able to make any numerical predictions 
since T is unknown. 

II. The conceptual aspect of Jaynes' programme which has caused most 
discussion and dispute concerns the status of entropy. The subjective- 
objective controversy about entropy is an old problem, but it is posed in a 

particularly clear way by Jaynes. Given that his analogue (CP, 54) for 

experimental entropy is obtained by maximising the information entropy, it 
is clear that it is a function, not only of the physical system, but of the 
information provided by the experiments. Jaynes recounts a conversation 
with Uhlenbeck (CP, 237-8), preceding any of his papers, in which he 

argues for his point of view. We are not told the precise words he used to put 
his case, but if they were in the spirit of the remarks quoted in section 2, 
above, then Uhlenbeck's reaction is easy to understand. There are obviously 
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some genuine elements of disagreement between Jaynes and his critics, but 
it seems that his choice of language sometimes exacerbates the situation and 
leads to the appearance of a wider gulf that actually exists. 

In an attempt to clarify the situation, let us look at it in the following way: 
The object of interest for statistical mechanics is a system YP 

= 
{(, PTb}, 

where Ym denotes the qualities of the system at the micro or atomic level and 

YPT denotes the qualities of the system at the macro or thermodynamic level. 
About such a system we have a certain amount of information 0 = {(, O4}. 
Part of this information will be qualitative (e.g. AM- will include details of the 

types of molecules, whether they are polar etc. and r4 will tell us whether the 

system is contained within rigid walls or subject to external forces, whether 
it is thermally isolated or in a heat bath etc.) and part may be numerical, 
obtained from measurements of quantities whose qualitative role we know. 

Finally we can imagine that we have a model n = {MM, MT} of the system. 
Given this situation the question is: What is it that has entropy? 

The distinction between 4p and Y is, it appears, the distinction made by 
Jaynes (CP, 85) between a 'thermodynamic system' and a 'physical system' 
respectively. He argues that there is no notion of the entropy of a physical 
system. That is, that the entropy S(5m) of 9m' is not well-defined. In this we 

agree with him, as would, we imagine, most people. The crucial question is 
whether there is a quantity S(Y9), the entropy of the system as a whole. 

Jaynes maintains that there is not. He supports his position by arguing that 
'we can always introduce as many new degrees of freedom as we please' (CP, 
86). If this assertion were true then there would be no way of obtaining a 

'complete' set of degrees of freedom for the system and thus no way of 

obtaining the true entropy. Hidden in this argument there seems to be a 
confusion between two distinct sets of variables. There is the set v, of 
variables describing the degrees of freedom and there is the set v2 of 

parameters on which the Hamiltonian of the system depends. Since, on any 
analysis of statistical mechanics, the entropy is a sum or integral over the 

points of phase space it will not be a function of the variables v1. It will, of 
course, be a function of the variables v2. The number N(vl) of members of vl 
is in general large; the number N(v2) of members of v2 may be large or small 
and greater or less than N(vl). For a perfect gas of n identical particles N(v1) 
= 6n whereas N(v2) = 3, the only members of v2 being n, the mass m of a 

particle and the volume V of the container. If all the particles have different 
masses then N(vl) = 6n and N(v2)= n +2. By introducing suitable inter- 

particle interactions one may increase N(v2) so as to exceed N(vl). This does 
not lead to the collapse of the concept of entropy. It simply increases the 
technical difficulty of its computation. Jaynes' discussion of the strain tensor 
(CP, 85-6) in which he resolves it into a complete set of orthogonal functions 
seems to be a case in which the number of members of v2is increased. We do 
not see how this leads to a collapse of the concept of entropy nor to an 
approach to the point 'where we control the location of each atom 
independently' (CP, 86), since the variables vq, which specify those locations 



zoo D. A. Lavis and P. J. Milligan 

will not appear in the entropy. The part of Jaynes' argument with which we 

agree can be expressed in terms of the contrast between the system Y9 and its 
model m. It is almost inevitably true that m will be much simpler than Y9 and 

degrees of freedom present in Y9 will be absent in m. The extent to which the 

entropy S(m) of m is a good representation of S(Y9) will depend on whether, 
during a particular process, the part of S(Y9) associated with degrees of 
freedom absent in m changes significantly. This is the point made by 
Denbigh [1981] in his discussion of nuclear entropies and the possible 
presence of unknown isotopes. From the fact that it must be conceded that M 
is a simplification of 9, involving the possible ignorance of important 
features of 9, it does not follow that 9 contains the potentiality for an 
infinite proliferation of degrees of freedom. Jaynes would, we suppose, 
reject this mode of discussion, since he makes very little explicit use of 
models. For him the important quantity is the information and his entropy 
is S(f), the entropy of J. One may, however, construe the information as a 

background model m together with measured values for the parameters 
contained in m. In this sense S(J) will be a numerical value of S(m) and the 
discussion above, about the relationship between S(m) and S(f), goes 
through for S(f) and S(f), given that one believes, as we do, in the 
existence of S(FY). This belief, although of course initially a matter of 

philosophical choice, could be undermined by a valid argument, which 
showed that S(FY) could not, even in principle, be properly defined. Jaynes' 
attempt to do this, described above, does not seem to us to achieve this end. 

III. A mathematical problem associated with Jaynes' method was first 
raised by Friedman and Shimony [1971]. They considered the system, 
described above, with energy spectrum {El, . . ., E,. Supposing that the 

background information B contains 'no information about the system other 
than its structure (which determines the set of possible states)' they obtain 
the prior probabilities pi = P(E = Ei I B) by maximising the information 

entropy SI, given by (i), subject only to the normalisation condition. This, 
of course, results in the uniform distribution (5a). They then suppose that 

D, is the 'evidence that the posterior expectation value of E is E'. This is used 
as a constraint when maximising S, to produce the new distribution for E 

given by (3a). This, however, is the Bayes posterior distribution of E, with 
uniform prior, if and only if the conditional probability density function 

p(D? I B) for D, given B is 

p(D, I B) = 6(e - E) (7a) 

where 

E= n-'1 Ei. (7b) 

Friedman and Shimony find this an unacceptable condition. Their position 
is that any distribution which professes to reflect ignorance cannot 
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reasonably make such positive predictions. Their replies (Shimony [19731]; 
Friedman [1973]) to Hobson [I972], Tribus and Montroni [1972] and Gage 
and Hestenes [I973] illustrate their difficulty more clearly. They accept the 

proof by Hobson that equations (7) are a necessary consequence of Bayes' 
theorem if the sequence of trials used to obtain e are independent, but they 
question this assumption of independence. Friedman gives the following 
argument: 'If for a very large value of m the first m trials strongly favor a 

proper subset of the energy spectrum, it is very likely that subsequent trials 
will do so as well. Thus in general the probability that the (m + I)th trial will 

yield a particular energy state depends on whether it is conditioned by just 
our background knowledge, or by our background knowledge and also our 

knowledge of the first m trials. Hence the trials are not statistically 
independent.' This argument seems to us to be false. It is certainly true that 
our knowledge of the distribution will change during the sequence of trials 
and we may even choose to reassess our assignment of probabilities to the 
various outcomes, but our supposition of independence will not be affected. 
A similar error is made by Shimony when he argues that 'the outcomes of the 
various trials are surely linked in the sense that a single die [in the example 
which he considers] is used throughout, so that any weighting which 
influences the outcome of one toss also influences the outcomes of the 
others'. Later he reinforces his point by arguing that 'while the data B do not 
assert a linkage [between?] trials, they do not preclude one; they are simply 
mute on the question. To justify Hobson's conclusion, one would have to 

say that on the bare background data B, the probability of the existence of a 

linking mechanism which would cause a statistical deviation from (f ) [(E> 
in our notation] is zero.' The justification for the assumption of indepen- 
dence is surely Occam's Razor. We must assume some covariance structure. 
In the absence of definite evidence to the contrary we use the simplest model 

available, that of independence. Only if this model does not satisfactorily fit 
the data is there a need to include more parameters. 

Jaynes dismisses the example of Friedman and Shimony by pointing out 

(CP, 250) that, if D, is a statement about a probability distribution on the 

sample space S = {E1,..., E,}, then it can be used as a constraint when 

maximising entropy but not as a conditioning statement in Bayes' theorem, 
since it is not a statement about an event in S. On the other hand, if De is a 
statement defining an event on the sample space S', of m trials, then it can be 
used as a conditioning statement for Bayes' theorem but not as a constraint 
when applying the maximum entropy procedure to events in S. For him the 

question: 'What is the probability of D, given the background information?' 
which is implicitly asked by Friedman and Shimony, is meaningless. The 

only question we can ask is, 'What is the probability that a sample of size m 
will give a mean of E?'. It would seem that some of the difficulty arises from 
the failure to appreciate that {p,} are parameters of the prior distribution not 
of the sampling distribution (see CP, I 18). 

However, this argument can also be turned on Jaynes, since he uses 
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sample estimates as constrains when maximising entropy. In these circum- 
stances, the maximum-entropy procedure is a model building method. We 
wish to fit a multinomial distribution to some data. Jaynes' method is to 
maximise entropy subject to the values of certain 'physically meaningful' 
expectations. In orthodox terms he adds parameters to his model until a 

satisfactory fit is achieved. That is, he employs a Forward Selection method 
rather than a Backwards Elimination method which Friedman and Shimony 
would presumably prefer. This point applies to his general approach to 
statistical problems and will be dealt with in greater detail in section 5. 

4 NON-EQUILIBRIUM STATISTICAL MECHANICS 

According to Penrose [1979]: 'The ultimate aim of non-equilibrium 
statistical mechanics is to derive laws describing the macroscopic behaviour 
of systems not at equilibrium, starting from the microscopic laws of motion', 
and his review of the progress in this area makes it clear that there is no 

general agreement that this aim has been achieved. A crucial problem here is 
to find the appropriate definition for entropy. The natural choice for this is 
the Gibbs or 'fine-grained' entropy SG = kSI, where St is given by (Ia) or 

(ib) according as the system is quantal or classical and the probability 
density operator or function in now dependent on the time t.' In either case 
the probability distribution satisfies a conservation condition known as 
Liouville's equation, and it can be shown (see e.g. Jancel [1969]) that SG 
remains constant as the system evolves in adiabatic conditions. This is 

usually regarded as a problem, since it is a consequence of the second law of 

thermodynamics that there is an increase in entropy during an irreversible 
adiabatic process. A variety of ways of avoiding this difficulty have been 

proposed. These consist mainly of replacing the probability distribution by 
either some course-grained or time-averaged distribution, or by some 

marginal distribution governed by a master equation (for a review see 

Penrose, ibid.). Although these methods achieve the desired increase in 

entropy, their physical meaning is not always very clear. 

Jaynes' approach to the problem is very different. His 'goal is not to 

"explain irreversibility" but to predict observable facts' (CP, 2) and he asks: 
'What probability assignment to microstates correctly describes the state of 
knowledge which we have, in practice, about a non-equilibrium state?' (CP, 
1og). After some years attempting to introduce 'new and more complicated 
principles' (CP, I Io) Jaynes finally concluded that the procedures, which he 
had used for equilibrium systems, remained valid for non-equilibrium. The 

only generalisation needed was to provide for the possibility that inform- 
ation was collected over a time interval. In his initial attempt to tackle the 

1 The equation (i) for S1 can be regarded as that of a system for which the density operator is 

diagonal in the energy representation, a condition which does not necessarily persist in time. 
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problem Jaynes considered a system which began in equilibrium, was 

subject to an adiabatic change, and was then allowed to return to 

equilibrium. He then computed the entropy for only the initial and final 

equilibrium states (CP, 82-5). His later work (CP, 292) and that of other 
authors using the same method (Robertson [1966]; Hobson and Loomis 

[1968]) indicates a relaxation of these restrictions and we shall present our 

description of his procedure in the more general way. For simplicity we use 
the language of quantum statistics but it should be borne in mind that the 
method applies equally well to classical systems (Hobson and Loomis 

[1968]). 
Consider a system undergoing an adiabatic change, which has a set of 

time-dependent observables {Q1(t), (?(t), ..., Qm(t)}, (of which one will 

normally be the Hamiltonian H(t)). Suppose measurements are made of 
these observables at time towith results {o(to), . . . , w(t)}. We obtain the 

density operator io(to) which maximises SI, given by (ia), subject to the 
constraints 

0k(o) 
= Trace [fO(tO 0k(tO)], k = I,..., m (8) 

and the experimental entropy Se(to) is taken to be equal to the fine-grained 
entropy 

S'(to) = -k Trace [io(ot ) In(to)] (9)' 

At some later time t the density operator evolves to fo(t) and we predict the 
values {(o(t),..., (om(t)} of the observables using 

W(k(t) = Trace [I(t) k(t)], k = 
I, . . ., m. (Io) 

A new density operator f(t) is now calculated by maximising S, subject to 
the constraints 

(Ok(t) 
= Trace 

[f(t)Qk(t)], 
k = I,..., m (II) 

and the experimental entropy is then taken equal to 

Se(t) = -k Trace [6(t) Inf(t)]. (12) 

Since 

(i) S')(t) is invariant under the time evolution (S?o)(t) = S(F)(to)), 
(ii) both f(t) and A(t) satisfy the constraint conditions (io), 

(iii) fi(t), but not necessarily Ao(t), maximises S, subject to the 

constraints, 

we have 

S(e)(t0) < Se(t). (13) 

This is the essence of Jaynes' procedure for demonstrating increasing 
entropy during an adiabatic change using the maximum-entropy method. 

1 In the case where we have only one observable Q(t) it has been shown by Hobson [1967] that 

i(to) is diagonal in the t(0) representation. 

0 
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Let us, however, consider an increasing sequence of times ({t, tl, t2,...}. If 
we use (Io) to predict the values {(l(tj),..., wm,(tj)} of the observables at 
time tj and the constraints (io) to derive Se(tj), then, of course, 

S(e?)(to) < Se(tj). (14) 

It does not, however, follow that Se(tj) < Se(tj+1). The entropy is not 

necessarily a monotonically increasing function. This consequence of the 
method has been recognised by Robertson [1966]. He considers the 
situation where the system is in equilibrium for t < o and the observables 

(in this case only the Hamiltonian) are time-dependent only for the period 
o < t < t'. He asserts, without proof, that, if the system settles down to 

thermodynamic equilibrium for t >> t' then Se(t) < Se(OO) for t > t'. 'That 

is, when the system settles down to equilibrium after being disturbed, the 

entropy will equal the maximum value it attains while, with time- 

independent Hamiltonian, the system was approaching equilibrium' 
(Robertson, ibid.). Although this result is weaker than the thermodynamic 
law of entropy increase for an isolated system, it may well be the strongest 
result which can be derived from statistical mechanics. The situation is, 
however, less clear when we consider adiabatic processes. Here we may 
envisage the following situation: Suppose, for some increasing sequence of 
times {to, t), t1, ) t2, .. .}, the system is isolated and in equilibrium for t < to 
and isolated for t' < t < tj,j = I, 2,..., but that it is subjected to adiabatic 

changes in the time intervals 
tI 

< t < t>+ 1, j = o, I,.... Suppose also that 
the intervals (tj, tj) are sufficiently long for the system to attain equilibrium. 
In Jaynes original discussion of the problem he showed (CP, 82-5) that 

S(e)(t0) < Se(ti). Now, however, we have a sequence of adiabatic changes from 

equilibrium to equilibrium, over the intervals (tj, 
tji+ 

) and, as indicated 

above, it is not possible, on this analysis, to show that Se(tj) Se(tj+ I), 
only that S()(t) < Se(tj). The important distinguishing feature of to is 
not just that it represents the end of a time interval during which the system 
was in equilibrium but also that it is a time at which the observables were 
measured. One way of achieving the result Se(tj) < Se(tj+ 1) would be to use 
the evolved form fj(tj + ) of fj(tj) to calculate Wk(tj + ) rather than fo0(t J+ 1) 
The difficulty with this, as can be seen from numerical calculations with 

simple examples, is that entropy curve becomes dependent on the time 
sequence chosen. In any case this alternative would probably have no appeal 
for Jaynes for whom the special status of t0, illustrating as it does the 

subjective nature of his entropy in its relationship to knowledge, would 

probably be no problem. 

5 STATISTICAL PREDICTION 

Most critics of Baysian statistics have concentrated their attack on the 
concept of the prior distribution. Their objections have been of one or both 
of the following two types: 
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(i) In many circumstances it is possible to define prior probabilities only 
if it is accepted that probability measures (or can measure) 'degree of 
belief'. This, of course, raises the wider issue of debate between 

'frequentists' and 'subjectivists' concerning the nature of 

probability. 
(ii) Even if prior probabilities are meaningful there is no way we can 

justify any particular choice of prior distribution. Since the choice of 

prior will affect the conclusions drawn from the data there is the 

danger that two workers could legitimately produce contradictory 
answers from the same experiment. 

In Jaynes' view, the answer to the first objection depends on the answer to 
the second. His paper 'Confidence intervals vs Baysian intervals' (CP, 
151-89) is written to show that the Baysian methodology provides sensible 
answers to statistical problems far more easily that Orthodox methods. He 
claims (CP, 183) that 'one can produce any number of examples, at first sight 
quite innocent-looking, in which use of confidence intervals or orthodox 

significance tests leads to absurd or dangerously misleading results', and he 

goes on to say that to the best of his knowledge 'nobody has ever produced an 

example where the Baysian method fails to yield a reasonable result'. He 

recognises that the simplicity of the Baysian approach will not convince the 

sceptics unless some rational procedure for determining prior probabilities 
is found and, as we have seen, his solution to this problem is the introduction 
of the maximum entropy criterion. The 'objective' prior distribution is the 
one which maximises the entropy subject to any constraints supplied by the 

prior information. While, however, this usually suffices to provide an 

answer, when the prior distribution is discrete, it is not enough when the 

prior is continuous. When we extend the concept of entropy to the 
continuous case we find that SI is given, in terms of a probability density 
function p(x) by (ib), where m(x) is an as yet arbitrary function. We are left 
with the problem of the choice of m(x). If we determine the distribution 
which maximises St subject only to the normalisation condition then we find 
that 

p(x) = m(x)[ m(x)dx . 
(i 5) 

'Except for a constant factor, the measure m(x) is also the prior distribution 
describing "complete ignorance" of x' (CP, I25). In other words, the 
problem of determining m(x) is simply the problem of defining "complete 
ignorance". 

Bayes, applying the principle of indifference, suggested the use of a 
uniform prior in circumstances of ignorance. However, as Jaynes points out 
(CP, I25), 'Bayes' rule has the obvious difficulty that it is not invariant 
under a change of parameters, and there seems to be no criterion telling us 
which parametrization to use.' So, for example, if we take a prior that is 
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uniform in x, this will not be the same as a prior that is uniform in x3. This 
failing must be one shared by all choices of prior. We cannot hope to have 
invariance of form under all parameter changes. However, Jaynes expects 
that the form of the prior should be invariant under those changes which 
merely convert the original problem into an equivalent one. As he says (CP, 
144): 'It is dangerous to apply this principle [of indifference] at the level of 
indifference between events. ... However, the principle of indifference may, 
in our view, be applied legitimately at the more abstract level of indifference 
between problems.' Thus Jaynes defines the 'ignorance prior' as the 
distribution which is form invariant under a certain group of trans- 
formations. 

An excellent example of this method is found in his paper: 'The well- 

posed problem' (CP, I33-48). This work deals with Bertrand's problem 
concerning straight lines drawn 'at random' intersecting a circle. The task is 
to find the probability that the chord formed by the line is longer than the 
side of the inscribed equilateral triangle. There are various ways of defining 
the term 'at random' in this context and they lead to different solutions to the 

problem. The standard response to this is to say that the problem is 'ill- 

posed' since 'at random' is undefined. Jaynes tackles the problem by 
recognising that nothing is said about the size or position of the circle. Any 
consistent solution must, therefore, use a distribution which is invariant 
under such transformations. This requirement leads to the conclusion that 
'at random' can mean only that the distance between the centre of the chord 
and the centre of the circle is uniformly distributed. This method has wide 

applicability leading to the general principle that 'every circumstance left 

unspecified by the statement of a problem defines an invariance property 
which the solution must have if there is to be any definite solution at all' (CP, 
I44). There are, however, problems when so little information is given that 
no solution is possible. In terms of transformation groups the difficulty is 
not that the problem is underdetermined, but rather that it is over- 

determined, since no distribution exists which satisfies all the requirements. 
Jaynes seems to have found a satisfactory method of defining a prior 

distribution which measures 'complete ignorance'. If 'testable' prior 
information is available' then this can be incorporated into the prior by 
using the information as a constraint when maximising entropy. Often, 
however, it is known that the prior information is not exact and there seems 
to be, in general, no way of introducing this uncertainty into the metho- 

dology. Jaynes accepts that the prior information 'might, for example, be 

only the guess of an idiot' (CP, 272) but he goes on to say that 'nevertheless, 
that is the number given to us, and our job is not to question it, but to do the 
best we can with it. This may seem an inflexible, cavalier attitude; I am 
convinced that nothing short of it can ever remove the ambiguity of what is 

1 Information is said to be testable if, given any proposed distribution {pi}, we can determine 
unambiguously whether the information agrees or disagrees with 

{pi} 
(CP, 240). 
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the problem? that has plagued probability theory for two centuries.' Surely 
this is wrong? Prior information must be examined to see if it is reliable 

enough to be used. Otherwise we shall find ourselves in the situation 
described in objection (ii), above; two workers with the guesses of idiots can 

validly arrive at different priors and so at different conclusions. Jaynes' only 
advice in these circumstances (CP, 272) is that if the information on the 

reliability of the orginal information is testable then this can be incorporated 
by adding a new constraint and then maximising entropy. He goes on to say 
(CP, 272-3) that 'of course, whenever information of this kind is available it 
should in principle be taken into account in this way. I would "hold as self- 
evident" that for any problem of inference, the ideal toward which we 
should aim is that all the relevant information we have ought to be 

incorporated explicitly into the equations.' 
The method of maximising entropy is not used by Jaynes only to find a 

prior distribution which satisfies testable information. He also uses it as a 

general model building tool in situations where we can observe directly the 
variable whose distribution we wish to model. The best practical example of 
this type is Jaynes' analysis of the Wolf Dice data. The Swiss astronomer 

Rudolph Wolf (1816-1893) conducted an experiment in which a red and a 
white die were tossed together 20,ooo times. As we should expect, using the 

Chi-squared test, the dice showed no sign of dependence, but there is strong 
evidence that for neither die are the outcomes equally likely. This is where 

previous studies ended, with a comment that Wolf wasted his time with 

badly made dice. Rowlinson [1970] uses the constraint of the observed mean 

score, as recommended by Jaynes (CP, 41-45) in applying the principle of 
maximum entropy. This leads to a lack of fit with the observed frequencies 
and he comments that 'what is clearly wrong with the indiscriminate use of 
this rule, and of the older rules from which it stems, is that they ignore the 

physics of the problems. Until we know something of the mechanics of the 
dice . . . we can say almost nothing about Pi. In response to this Jaynes 
considers the physical causes of bias in the white die (CP, 330). 'The 
two most obvious are (i) a shift of the center of gravity due to the mass of 

ivory excavated from the spots, which being proportional to the number of 
spots on any side, should make the quantity fl(z) = i-3 .5 have a nonzero 
expectation; and (2) errors in trying to machine a perfect cube, which will 
tend to make one dimension (the last side cut) slightly different from the 
other two. It is clear from the data that Wolf's white die gave a lower 
frequency for the faces (3, 4); and therefore that the (3-4) dimension was 
undoubtably greater than the (1-6) or (2-5) ones. The effect of this is that 
the function f2(i) = 

--2, 
if i = 3, 4; + i otherwise, has a nonzero expec- 

tation.' The observed averages of these two quantities were then used to 
form constraints before maximising entropy. If only the first constraint is 
applied then the Chi-squared test provides clear evidence of lack of fit. 
However, when both constraints are used then the Chi-squared statistic is 
just significant (the critical level is 0.025). Thus the two obvious causes are 
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sufficient to explain all but a fraction of the bias. 'To assume a further very 
tiny imperfection [the (2-3-6) corner chipped off] we could make even this 

discrepancy disappear; but in view of the great number of trials one will 

probably not consider the result as sufficiently strong evidence for this' (CP, 
332). 

The philosophy underlying this example is completely different from that 
used when finding prior probabilities. Here the various causes of bias are 
used to construct models which are then tested against the data. If the fit is 
not satisfactory then clearly new constraints are required, which can then be 

investigated. This is simply a standard modelling approach. In fact, as was 
mentioned above the maximum entropy distribution can be regarded as the 
Maximum Likelihood distribution of a class in which In (pt) is a linear 
function of the lambdas (these being the Lagrange multipliers of the 
maximum entropy method). The use of such log-linear models for 
multinomial distributions is well-established in the study of multiway 
contingency tables. Indeed most computer packages which allow log-linear 
models with Poisson distribution errors1 will perform the calculations 
needed to follow Jaynes' method. Jaynes' extension of such models to other 

examples of the multinomial distribution is particularly valuable, especially 
since, as the Wolf's Dice problem shows, we can incorporate our theory of 
the mechanism into the model. A weakness of the method, which has already 
been mentioned, is that Jaynes seems to employ only a Forward Selection 

procedure, in which parameters are added until a satisfactory fit is found. 
This has the disadvantage that no parameter is removed after it has entered 
the equation. There is nothing, however, in the method which prevents us 

adopting the more flexible approach that is usually used in linear modelling. 
Notice also that no attempt is made to use all the information in the data, i.e. 
the frequencies of each outcome.2 In particular, information on the 

reliability of the observed averages is not included, since this is unnecessary. 
It follows from the theory of Maximum Likelihood Estimation that the 
variance-covariance matrix of the estimates of the parameters is found from 
the second derivatives of the logarithm of the likelihood function. 

It seems that Jaynes has two different attitudes to the constraints when 

maximising entropy: 

(i) When the variable can be observed directly then the constraint must 
be physically meaningful, and is tested against the data. This 

approach will surely be accepted by all and Jaynes' technique will be 
a valuable addition to the statistician's 'tool-box'. 

(ii) When the variable can be observed only indirectly and a prior 
distribution is required, then the constraints can be anything which is 

given. Presumably, the assumption is that, when the sample is used 

1 E.g. GLIM (Generalised Linear Interactive Modelling), available from NAG Algorithms 
Ltd. 

2 Since, if they were used, then the method would equate the probabilities with the observed 

relative frequencies. 
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to 'update' the prior by calculating the posterior distribution, then 
the effect of any false assumptions should be negligible. This is fine if 
the experiment is reasonably informative, but, if prior information is 
so unimportant, why not use the ignorance prior instead? On the 
other hand, if prior information is important then we must be 
prepared to justify anything we use to form our constraints. Since, 
otherwise, we shall be in the absurd situation of being able to draw 

contradictory conclusions from an experiment. 

Jaynes gives a convincing technique for finding prior distributions which 

represent ignorance, and of incorporating certainly known prior informa- 
tion into the prior. But if the information is known not to be completely sure, 
then we have a problem. This is dealt with convincingly by Jaynes only 
when direct observations are possible. 

6 CONCLUSIONS 

All scientists have philosophical prejudices, more euphemistically called 

philosophical presuppositions. One of the useful roles of the philosophy of 
science is to make these explicit rather than implicit and to help scientists see 
how they affect the choice and construction of acceptable theories. We admit 
that our prejudices are towards the view that the role of science is to ask the 
question 'What is nature really like?' or, in particular cases, 'How does this 
system behave?' It is, therefore, clear from what has gone before that we are 
not entirely in sympathy with Jaynes' more restricted aim of simply making 
satisfactory predictions for a system. That having been said, we find his 
contribution to the scientific debate both valuable and stimulating and we 
have sympathy with him in his feeling (see e.g. CP, I 15, 149-150) that he has 
in many cases been treated less than fairly. It would seem that his method 
has in some cases been dismissed after an insufficiently careful analysis, 
because of the philosophical prejudices of the critic rather than because of 
the method used to tackle the particular problem under discussion.1 

Our aim in writing this paper has been to attempt to exemplify the kind of 
difficulties which we suppose others may have in reading Jaynes' work. We 
should value a fuller explanation of the points raised. It may be that the 
philosophical divide would still prevent an acceptance of his complete 
position but as he says (CP, I i2): 'If you do not like my philosophy, but you 
find that the formalism, nevertheless, does give useful results then I am 
quite sure that you will be able to invent some other philosophy by which 
that formalism can be justified!' If the publication of his collected papers 
goes some way towards this end and towards a fuller appreciation of his work 
it will be fully justified. 

D. A. LAVISand P. J. MILLIGAN 
Chelsea College, University of London 

1 
One of the writers (Lavis [I977]) would plead guilty to this charge. 
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